

ssXCP

User’s Manual

Created by the J1939 Experts!
Visit our XCP Protocol Page.

Version 1.0
Revised August 15th, 2014

https://www.simmasoftware.com/xcp.html

 P a g e 2 | 29

ssI14229 User’s Manual

 ssXCP Protocol Stack License

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE OPENING THE PACKAGE
CONTAINING THE PROGRAM DISTRIBUTION MEDIA (DISKETTES, CD, ELECTRONIC MAIL), THE COMPUTER SOFTWARE
THEREIN, AND THE ACCOMPANYING USER DOCUMENTATION. THIS SOURCE CODE IS COPYRIGHTED AND LICENSED
(NOT SOLD). BY OPENING THE PACKAGE CONTAINING THE SOURCE CODE, YOU ARE ACCEPTING AND AGREEING TO
THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THE TERMS OF THIS LICENSE
AGREEMENT, YOU SHOULD PROMPTLY RETURN THE PACKAGE IN UNOPENED FORM, AND YOU WILL RECEIVE A
REFUND OF YOUR MONEY. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING THE
ssXCP PROTOCOL STACK BETWEEN YOU AND SIMMA SOFTWARE, INC. (REFERRED TO AS "LICENSOR"), AND IT
SUPERSEDES ANY PRIOR PROPOSAL, REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES.

1. Corporate License Grant. Simma Software hereby grants to the purchaser (herein referred to as the “Client”), a royalty free, non-
exclusive license to use the ssXCP protocol stack source code (collectively referred to as the "Software”) as part of Client’s product.
Except as provided above, Client agrees to not assign, sublicense, transfer, pledge, lease, rent, or share the Software Code under
this License Agreement.

2. Simma Software's Rights. Client acknowledges and agrees that the Software and the documentation are proprietary products of
Simma Software and are protected under U.S. copyright law. Client further acknowledges and agrees that all right, title, and interest
in and to the Software, including associated intellectual property rights, are and shall remain with Simma Software. This License
Agreement does not convey to Client an interest in or to the Software, but only a limited right of use revocable in accordance with
the terms of this License Agreement.

3. License Fees. The Client in consideration of the licenses granted under this License Agreement will pay a one-time license fee.

4. Term. This License Agreement shall continue until terminated by either party. Client may terminate this License Agreement at
any time. Simma Software may terminate this License Agreement only in the event of a material breach by Client of any term
hereof, provided that such shall take effect 60 days after receipt of a written notice from Simma Software of such termination and
further provided that such written notice allows 60 days for Client to cure such breach and thereby avoid termination. Upon
termination of this License Agreement, all rights granted to Client will terminate and revert to Simma Software. Promptly upon termination
of this Agreement for any reason or upon discontinuance or abandonment of Client’s possession or use of the Software, Client must
return or destroy, as requested by Simma Software, all copies of the Software in Client’s possession, and all other materials pertaining to
the Software (including all copies thereof). Client agrees to certify compliance with such restriction upon Simma Software’s request.

5. Limited Warranty. Simma Software warrants, for Client’s benefit alone, for a period of one year (called the “Warranty Period”)
from the date of delivery of the software, that during this period the Software shall operate substantially in accordance with the
functionality described in the User's Manual. If during the Warranty Period, a defect in the Software appears, Simma Software will
make all reasonable efforts to cure the defect, at no cost to the Client. Client agrees that the foregoing constitutes Client ’s sole and
exclusive remedy for breach by Simma Software of any warranties made under this Agreement. Simma Software is not responsible
for obsolescence of the Software that may result from changes in Client’s requirements. The foregoing warranty shall apply only to the
most current version of the Software issued from time to time by Simma Software. Simma Software assumes no responsibility for the use
of superseded, outdated, or uncorrected versions of the licensed software. EXCEPT FOR THE WARRANTIES SET FORTH ABOVE,
THE SOFTWARE, AND THE SOFTWARE CONTAINED THEREIN, ARE LICENSED "AS IS," AND SIMMA SOFTWARE
DISCLAIMS ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6. Limitation of Liability. Simma Software's cumulative liability to Client or any other party for any loss or damages resulting from
any claims, demands, or actions arising out of or relating to this License Agreement shall not exceed the license fee paid to Simma
Software for the use of the Software. In no event shall Simma Software be liable for any indirect, incidental, consequential, special,
or exemplary damages or lost profits, even if Simma Software has been advised of the possibility of such damages. SOME STATES
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO CLIENT.

7. Governing Law. This License Agreement shall be construed and governed in accordance with the laws of the State of Indiana.

8. Severability. Should any court of competent jurisdiction declare any term of this License Agreement void or unenforceable, such
declaration shall have no effect on the remaining terms hereof.

9. No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party in the
event of any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequent
actions in the event of future breach

 P a g e 3 | 29 ssXCP User’s Manual

TABLE OF CONTENTS
Chapter 1: Introduction ... 4

Chapter 2: Integration of ssXCP .. 5

Chapter 3: ssCAN Driver API .. 6
Function Prototype .. 6
Function Description ... 6
3.1 Data Type Definitions .. 6
3.2 Function APIs .. 7

Chapter 4: ssXCP API .. 10
Function Prototypes ... 10
Function Descriptions .. 10
4.1 xcp_init... 11
4.2 xcpapp_init ... 12
4.3 xcp_update ... 13
4.4 xcpapp_update .. 14
4.5 xcptrnsp_tx_rsp... 15
4.6 xcp_error ... 16
4.7 xcp_ev ... 17
4.8 xcp_serv ... 18
4.9 xcp_event .. 19
4.10 xcpapp_user_cmd .. 20
4.11 xcpapp_get_seed .. 21
4.12 xcpapp_unlock .. 22

Chapter 5: Configuration .. 23
5.1 XCP Features ... 23
5.2 Memory Address Granularity ... 23
5.3 Block Transfer Mode ... 23
5.4 Additional Communication Features .. 24
5.5 Queue Size ... 24
5.6 Driver Version ... 24
5.7 Block Checksum Maximum Size .. 24
5.8 Unused Configuration Variables ... 25
5.9 DAQ/STIM Configuration Variables ... 25
5.10 DAQ Configuration ... 25

Chapter 6: Examples .. 28
6.1 xcpapp_user_cmd Example: .. 28
6.2 xcpapp_get_seed Example .. 29
6.3 xcpapp_unlock Example: .. 29

 P a g e 4 | 29 ssXCP User’s Manual

Chapter 1: Introduction

Chapter 1: Introduction

ssXCP is a high performance XCPonCAN protocol stack written in ANSI C. It adheres to
both the XCP specification and to the software development best practices described in
the MISRA C guidelines.

The XCP protocol stack is a modularized design with an emphasis on software
readability and performance. It is easy to understand and platform independent allowing
it to be used on any CPU or DSP with or without an RTOS.

Filenames File Description
xcp.h Core header file. Do not modify.

xcp.c Core source file. Do not modify.

xcpcan.h Transport header file. Do not modify.

xcpcan.c Transport source file. Do not modify.

xcpcfg.c Configuration file. Modification allowed.

xcpcfg.h Configuration file. Modification allowed.

xcpapp.h Application header file. Modification allowed.

xcpapp.c Application source file. Modification allowed.

 Table 1-1: ssXCP files

 P a g e 5 | 29 ssXCP User’s Manual

Chapter 2: Integration of ssXCP

Chapter 2: Integration of ssXCP

This chapter describes how to integrate ssXCP into your application. After this is
complete, you will be able to receive and transmit XCP messages over CAN. For
implementation details, please see the chapters covering the API for ssXCP.

Integration Steps:

1. Develop or purchase a CAN device driver that adheres to the CAN API specified
in Chapter 3.

2. Implement the required methods: xcpapp_user_cmd, xcpapp_get_seed, and
xcp_unlock; as specified in sections 4.10 through 4.12.

3. Configure the #define section in xcpcfg.h as outlined in chapter 5.

4. If desired, configure the DAQs in xcpcfg.c as outlined in chapter 5.

5. Before using any ssXCP features be sure to call can_init() and xcp_init(), in that

order, to reset and initialize both the driver and the protocol stack.

6. Call xcp_update at a fixed periodic interval (e.g. every 5 ms). This provides the
time base for the XCP stack.

 P a g e 6 | 29 ssXCP User’s Manual

Chapter 3: ssCAN Driver API

Chapter 3: ssCAN Driver API

The controller area network (CAN) driver application program interface (API) is a software
module that provides functions for receiving and transmitting controller area network (CAN) data
frames. Because CAN peripherals typically differ from one microcontroller to another, this
module is responsible for encompassing all platform dependent aspects of CAN
communications.

The CAN Driver API contains three functions that are responsible for initializing the CAN
hardware and handling buffered reception and transmission of CAN frames.

Function
Prototype

Function Description

void can_init (void) Initializes CAN hardware

uint8_t can_rx (can_t *frame) Receives CAN frame (buffered I/O)

uint8_t can_tx (can_t *frame) Transmits CAN frame (buffered I/O)

 Table 3-1: CAN Driver API functions

3.1 Data Type Definitions

 Data type:
 can_t

 Description:
 can_t is a data type used to store CAN frames. It contains the CAN frame
 identifier, the CAN frame data, and the size of data. NOTE: If the most
 significant bit of id (i.e. bit 31) is set, it indicates an extended CAN frame, otherwise
 it indicates a standard CAN frame.

 Definition:

typedef struct {

 uint32_t id;
 uint8_t buf[8];
 uint8_t buf_len;

} can_t;

 P a g e 7 | 29 ssXCP User’s Manual

Chapter 3: ssCAN Driver API

3.2 Function APIs

3.2.1 can_init

 Function Prototype:

 Description:
can_init initializes the CAN peripheral for reception and transmission of CAN frames at
a network speed of 250 or 500 kbps. Any external hardware that needs to be initialized
can be done inside of can_init. The sample point should be as close to 0.80 as
possible.

 Parameters:
 void

 Return Value:
 void

void can_init(
 void
);

 P a g e 8 | 29 ssXCP User’s Manual

Chapter 3: ssCAN Driver API

3.2.2 can_rx

 Function Prototype:

Description:
can_rx checks to see if there is a CAN data frame available in the receive buffer. If
one is available, it is copied into the can_t structure which is pointed to by frame. If the
most significant bit of frame->id (i.e. bit 31) is set, it indicates an extended CAN frame,
otherwise it indicates a standard CAN frame.

 Parameters:
 frame: Points to memory where the received CAN frame should be stored.

 Return Value:
 1: No CAN frame was read from the receive buffer.

 0: A CAN frame was successfully read from the receive buffer.

uint8_t can_rx (
 can_t *frame
);

 P a g e 9 | 29 ssXCP User’s Manual

Chapter 3: ssCAN Driver API

3.2.3 can_tx

 Function Prototype:

 Description:
 If memory is available inside of the transmit buffer, can_tx copies the memory
 pointed to by frame to the transmit buffer. If transmission of CAN frames is not
 currently in progress, then it will be initiated. If the most significant bit of
 frame->id (i.e. bit 31) is set, it indicates an extended CAN frame, otherwise it
 indicates a standard CAN frame.

 Parameters:
 frame: Points to the CAN frame that should be copied to the transmit buffer.

 Return Value:
 1: No CAN frame was written to the transmit buffer.
 0: The CAN frame was successfully written to the transmit buffer

uint8_t can_tx (
 can_t *frame
);

 P a g e 10 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

Chapter 4: ssXCP API

This chapter describes the application program interface (API) for the ssXCP module.

Function Prototypes
Function
Descriptions

void xcp_init (void) Initializes protocol stack

void xcpapp_init (void) Called on startup

void xcp_update (void) Provides periodic time base

void xcpapp_update (void) Called at periodic tick rate

void xcptrnsp_tx_rsp (uint8_t *msg, uint8_t len) Transmits a response message

void xcp_error (uint8_t err, uint8_t *opt, uint8_t optlen) Transmits an error message

void xcp_ev (uint8_t ev, uint8_t *opt, uint8_t optlen) Transmits an event message

void xcp_serv (uint8_t serv, uint8_t *opt, uint8_t optlen) Transmits a service message

void xcp_event (uint8_t chn) Triggers a DAQ event

 Table 3-1: API functions

 P a g e 11 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.1 xcp_init

 Function Prototype:

Description:
 Initializes and resets the XCP module.

 Parameters:
void

 Return Value:
void

void xcp_init (
 void
);

 P a g e 12 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.2 xcpapp_init

 Function Prototype:

Description:
Initializes the XCP application software. The implementation of this method is left for
the user to add any necessary functions to be called when the XCP module is
initialized or reset.

 Parameters:
void

 Return Value:
void

void xcpapp_init (
 void
);

 P a g e 13 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.3 xcp_update

 Function Prototype:

Description:
 Provides the periodic time base for the XCP module.

 Parameters:
void

 Return Value:
void

void xcp_update (
 void
);

 P a g e 14 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.4 xcpapp_update

 Function Prototype:

Description:
This method is called at the tick rate of the XCP module. The user should use this
method for any tasks which should be performed on tick.

 Parameters:
void

 Return Value:
void

void xcpapp_update (
 void
);

 P a g e 15 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.5 xcptrnsp_tx_rsp

 Function Prototype:

Description:
Transmits fully formed XCP responses. These messages will be converted to the
proper format before being transferred over the bus. Messages sent with this method
should be responses: they will be sent with the response ID.

 Parameters:
msg: Pointer to the message to be transmitted
len: Length of message buffer

 Return Value:
void

void xcptrnsp_tx_rsp (
 uint8_t *msg,
 uint8_t len
);

 P a g e 16 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.6 xcp_error

 Function Prototype:

Description:

Transmits an error message with the given error code and optional data. xcp.h

contains all possible XCP error codes.

 Parameters:
err: Error code to be transmitted.
*opt: Buffer containing optional data to be transmitted
optlen: Length of optional buffer

 Return Value:
void

void xcp_error (
 uint8_t err,
 uint8_t *opt,
 uint8_t optlen
);

 P a g e 17 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.7 xcp_ev

 Function Prototype:

Description:

Transmits an event message with the given event code and optional data. Xcp.h
contains all possible XCP event codes.

 Parameters:
ev: Event code to be transmitted
*opt: Buffer containing optional data to be transmitted
optlen: Length of optional buffer

 Return Value:
void

void xcp_ev (
 uint8_t ev,
 uint8_t *opt,
 uint8_t optlen
);

 P a g e 18 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.8 xcp_serv

 Function Prototype:

Description:

Transmits a service message with the given service code and optional data. Xcp.h
contains all possible XCP service codes.

 Parameters:
serv: Service code to be transmitted
*opt: Buffer containing optional data to be transmitted
optlen: Length of optional buffer

 Return Value:
void

void xcp_serv (
 uint8_t serv,
 uint8_t *opt,
 uint8_t optlen
);

 P a g e 19 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.9 xcp_event

 Function Prototype:

Description:
This method is called to trigger a DAQ transmitting event. When called, all DAQs on the
given channel will transmit their DTOs.

 Parameters:
chn: Event channel

 Return Value:
void

void xcp_event (
 uint8_t chn
);

 P a g e 20 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.10 xcpapp_user_cmd

 Function Prototype:

Description:
This method is called when a packet which needs to be processed in a user defined
manner. If xcp_success is set to 1 when the method returns, the protocol will send a
standard positive response. If any other response is desired, xcp_success should be
left as zero and xcptrnsp_tx_rsp() should be used to send a positive response
message, or xcp_error() used to send a negative response.

 Parameters:
data: Buffer containing data received in message

 Return Value:
void

void xcpapp_user_cmd (
 uint8_t *data
);

 P a g e 21 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.11 xcpapp_get_seed

 Function Prototype:

Description:

This method loads the seed for the requested resource into the buffer and returns the
length. All seeds must be of length less than MAX_CTO – 1.

 Parameters:
resource: Requested resource to be unlocked.
*buf: Seed to be returned, packed into a byte array.

 Return Value:
uint8_t Length of seed

uint8_t xcpapp_get_seed (
 uint8_t resource,
 uint8_t *buf
);

 P a g e 22 | 29 ssXCP User’s Manual

Chapter 4: ssXCP API

4.12 xcpapp_unlock

 Function Prototype:

Description:

This method verifies the received key is valid for unlocking the previously specified
resource. If the key is valid, the resource to be unlocked should be returned. Otherwise
return 0.

 Parameters:
func: Sub-function code
sprsp: Suppress response from server
*key: Timing parameter values to be set in the server
klen: Length of key array in bytes

 Return Value:
uint8_t If the key is valid return the resource to be unlocked, otherwise return 0.

uint8_t xcpapp_unlock (
 uint8_t *key,
 uint8_t len
);

 P a g e 23 | 29 ssXCP User’s Manual

Chapter 5: Configuration

Chapter 5: Configuration

This chapter describes all configurable items of the ssXCP module. All of these configurations
are defined in xcp_cfg.h and xcp_cfg.c. Remember to also configure the other stack layers per
the applicable user manuals.

5.1 XCP Features
These configuration options enable/disable the various features of XCP. Currently the PGM and
PAG features are not implemented and should not be enabled.

5.2 Memory Address Granularity
This variable sets the size of the smallest memory block to be accessed by the protocol. All data
transfer size arguments are in terms of the address granularity. All addresses are checked to be
aligned with the granularity. Options are 1, 2, and 4 for 1, 2 or 4 bytes.

5.3 Block Transfer Mode
The block transfer feature for messages being transmitted to the slave can be enabled/disabled
with XCPCFG_BLCK_TRNSF.

#define XCPCFG_ADDR_GRANU 2

#define XCPCFG_CAL 1
#define XCPCFG_DAQ 1
#define XCPCFG_STIM 1
#define XCPCFG_PGM 0
#define XCPCFG_PAG 0

#define XCPCFG_BLCK_TRNSF 1

 P a g e 24 | 29 ssXCP User’s Manual

Chapter 5: Configuration

5.4 Additional Communication Features
This variable enables/disables additional communication features. It is a bitmask consisting of
two bits. Bit 1 toggles interleaved communication, however it is not supported on CAN and
should be set to 0. Bit 0 toggles block transfer from the slave to the master. If master block
transfer is enabled two other variables must be configured. The maximum number of packets
which can be transferred in a block is controlled with XCPCFG_MAX_BS. The minimum delay
between packets is measured in update cycles and is set by XCPCFG_MIN_ST.

5.5 Queue Size
This variable sets the number of packets which can be queued to be transferred. It should be
set to the number of CAN buffers available for transfer.

5.6 Driver Version
This variable sets the reported driver version. It should be set to reflect any driver version
iteration to ensure compatibility.

5.7 Block Checksum Maximum Size
This variable sets the maximum size of a memory block which can be checked. This value is in
units of the address granularity.

#define XCPFG_QUEUE_SIZE 4

#define XCPCFG_COMM_OPT 1
#define XCPCFG_MAX_BS 4
#define XCPCFG_MIN_ST 5

#define XCPFG_DRVR_VERS 1

#define XCPCFG_MAX_BLCK_SIZE (0x10000/XCPCFG_ADDR_GRANU)

 P a g e 25 | 29 ssXCP User’s Manual

Chapter 5: Configuration

5.8 Unused Configuration Variables
The following variables are unused and should be left to their default setting. They exist to
maintain compatibility with the XCP standard and may be used in future versions.

5.9 DAQ/STIM Configuration Variables
The following variables are used to configure the DAQ and STIM features.
MAX_DAQ specifies the number of DAQ structures which can contain data.
MAX_ODT specifies the number of ODTs which can be allocated per DAQ.
MAX_ODTENTRY specifies the number of entries which can be allocated per ODT.
MIN_DAQ specifies the index of the first DAQ which can be configured at runtime.
MAX_EVENT specifies the highest event channel.
DTO_PID specifies which addressing scheme should be used for DTO messages. The three
options are: 0 for a unique identifier for each ODT, specified in the first byte.
 1 for a unique identifier for each DAQ, specified in the second byte and a relative
identifier for each ODT specified in the first.
 2 for unique CAN IDs for each ODT, which must be configured.

5.10 DAQ Configuration
The DAQ engine can be configured both at run-time and compile-time. If they are to be set up at
compile-time simply replace the zeroes in the correct struct fields in xcp_cfg.c. If more or fewer

DAQs are needed they can be added or removed from xcp_cfg.c. Undefined behavior will

occur if the structs are not configured properly.

#define XCPCFG_INTERLEAVED 0
#define XCPCFG_FREEZE 0
#define XCPCFG_MAX_SEGMENT 0
#define XCPCFG_TS_MODE 0
#define XCPCFG_TS_TICK 0

#define XCPCFG_MAX_DAQ 4
#define XCPCFG_MAX_ODT 2
#define XCPCFG_MAX_ODTENTRY 7
#define XCPCFG_MIN_DAQ 0
#define XCPCFG_MAX_EVENT 5
#define XCPCFG_DTO_PID 0

 P a g e 26 | 29 ssXCP User’s Manual

Chapter 5: Configuration

5.10.1 DAQ Data Type Description
Data type:

 odtentry_t

 Description:
 odtentry_t is a data type used to store ODT entries.

Definition:

Data type:

 odt_t

 Description:
 odt_t is a data type used to store ODTs.

 Definition:

typedef struct {

 odtentry_t odtentry[XCPCFG_MAX_ODTENTRY]; /* ODTEntry array */
 uint8_t num; /* Number of ODTs */

} odt_t;

typedef struct {

 uint8_t bo; /* bit offset */
 uint8_t len; /* length */
 uint8_t ext; /* address extension */
 uint32_t addr; /* address */

} odtentry_t;

 P a g e 27 | 29 ssXCP User’s Manual

Chapter 5: Configuration

Data type:
 daq_t

 Description:
 daq_t is a data type used to store DAQs.

 Definition:

Data type:
 alldaq_t

 Description:
 alldaq_t is a data type used to store pointers to all of the DAQs.

 Definition:

typedef struct {

 daq_t *daqs[XCPCFG_MAX_DAQ]; /* Pointer to DAQs */
 uint16_t num; /* Number of DAQs */
 uint8_t prop; /* General DAQ properties */
 uint8_t key; /* DAQ Key Byte */

} alldaq_t;

typedef struct {

 odt_t *odt[XCPCFG_MAX_ODT]; /* Pointer array to ODTs in DAQ */
 uint16_t event; /* Event which triggers DAQ */
 uint8_t num; /* Number of ODTs */
 uint8_t mode; /* 0 for DAQ, 1 for STIM */
 uint8_t prop; /* Property bit mask */
 uint8_t trans; /* Prescaler, not supported */
 uint8_t priority; /* Transmit priority */

} daq_t;

 P a g e 28 | 29 ssXCP User’s Manual

Chapter 6: Examples

Chapter 6: Examples

This chapter gives examples of how to implement xcpapp_user_cmd, xcpapp_get_seed, and
xcp_unlock.

6.1 xcpapp_user_cmd Example:

void
xcpapp_user_cmd (uint8_t *data)
{
 uint8_t *rsp;
 uint8_t rsplen;

 switch(data[0]) {
 /* Return XCP_MTA pointer address */
 case 0x01:
 buf[0] = 0xff;
 buf[1] = (uint8_t) xcp_mta>>24;
 buf[2] = (uint8_t) xcp_mta>>16;
 buf[3] = (uint8_t) xcp_mta>>8;
 buf[4] = (uint8_t) xcp_mta;
 rsplen = 5;
 }
 xcptrnsp_tx_rsp(rsp, rsplen);
}

 P a g e 29 | 29 ssXCP User’s Manual

Chapter 6: Examples

6.2 xcpapp_get_seed Example

6.3 xcpapp_unlock Example:

uint8_t
xcpapp_unlock (uint8_t *key, uint8_t len)
{
 if(key[0] == 'P' &&
 key[1] == 'S' &&
 key[2] == 'S' &&
 key[3] == 'W' &&
 key[4] == 'R' &&
 key[5] == 'D' &&
 len == 6) {
 return xcpapp_resource;
 }
 return 0;
}

uint8_t
xcpapp_get_seed (uint8_t resource, uint8_t *buf)
{
 buf[0] = 'P';
 buf[1] = 'S';
 buf[2] = 'S';
 buf[3] = 'W';
 buf[4] = 'R';
 buf[5] = 'D';
 xcpapp_resource = resource;
 return 6;
}

