

ssJ1939-Full

User’s Manual

Created by the J1939 Experts!

Version 1.9 - Revised March 6th, 2013

© Copyright 2014 - Simma Software, Inc.

http://www.simmasoftware.com/j1939.html

ssJ1939 User’s Manual - 2 -

ssJ1939 Protocol Stack License

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE OPENING THE
PACKAGE CONTAINING THE PROGRAM DISTRIBUTION MEDIA (DISKETTES, CD, ELECTRONIC MAIL), THE
COMPUTER SOFTWARE THEREIN, AND THE ACCOMPANYING USER DOCUMENTATION. THIS SOURCE CODE IS
COPYRIGHTED AND LICENSED (NOT SOLD). BY OPENING THE PACKAGE CONTAINING THE SOURCE CODE,
YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY THE TERMS OF THIS LICENSE AGREEMENT, YOU SHOULD PROMPTLY RETURN
THE PACKAGE IN UNOPENED FORM, AND YOU WILL RECEIVE A REFUND OF YOUR MONEY. THIS LICENSE
AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING THE J1939 PROTOCOL STACK BETWEEN
YOU AND SIMMA SOFTWARE, INC. (REFERRED TO AS "LICENSOR"), AND IT SUPERSEDES ANY PRIOR
PROPOSAL, REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES.

1. Corporate License Grant. Simma Software hereby grants to the purchaser (herein referred to as the “Client”), a royalty free, non-
exclusive license to use the J1939 protocol stack source code (collectively referred to as the "Software”) as part of Client’s product.

Except as provided above, Client agrees to not assign, sublicense, transfer, pledge, lease, rent, or share the Software Code under this

License Agreement.

2. Simma Software's Rights. Client acknowledges and agrees that the Software and the documentation are proprietary products of

Simma Software and are protected under U.S. copyright law. Client further acknowledges and agrees that all right, title, and interest
in and to the Software, including associated intellectual property rights, are and shall remain with Simma Software. This License

Agreement does not convey to Client an interest in or to the Software, but only a limited right of use revocable in accordance with the

terms of this License Agreement.

3. License Fees. The Client in consideration of the licenses granted under this License Agreement will pay a one-time license fee.

4. Term. This License Agreement shall continue until terminated by either party. Client may terminate this License Agreement at any

time. Simma Software may terminate this License Agreement only in the event of a material breach by Client of any term hereof,
provided that such shall take effect 60 days after receipt of a written notice from Simma Software of such termination and further

provided that such written notice allows 60 days for Client to cure such breach and thereby avoid termination. Upon termination of this

License Agreement, all rights granted to Client will terminate and revert to Simma Software. Promptly upon termination of this Agreement
for any reason or upon discontinuance or abandonment of Client’s possession or use of the Software, Client must return or destroy, as

requested by Simma Software, all copies of the Software in Client’s possession, and all other materials pertaining to the Software (including

all copies thereof). Client agrees to certify compliance with such restriction upon Simma Software’s request.

5. Limited Warranty. Simma Software warrants, for Client’s benefit alone, for a period of one year (called the “Warranty Period”)

from the date of delivery of the software, that during this period the Software shall operate substantially in accordance with the

functionality described in the User's Manual. If during the Warranty Period, a defect in the Software appears, Simma Software will

make all reasonable efforts to cure the defect, at no cost to the Client. Client agrees that the foregoing constitutes Client’s sole and

exclusive remedy for breach by Simma Software of any warranties made under this Agreement. Simma Software is not responsible for
obsolescence of the Software that may result from changes in Client’s requirements. The foregoing warranty shall apply only to the most

current version of the Software issued from time to time by Simma Software. Simma Software assumes no responsibility for the use of

superseded, outdated, or uncorrected versions of the licensed software. EXCEPT FOR THE WARRANTIES SET FORTH ABOVE,
THE SOFTWARE, AND THE SOFTWARE CONTAINED THEREIN, ARE LICENSED "AS IS," AND SIMMA SOFTWARE

DISCLAIMS ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT

LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6. Limitation of Liability. Simma Software's cumulative liability to Client or any other party for any loss or damages resulting from

any claims, demands, or actions arising out of or relating to this License Agreement shall not exceed the license fee paid to Simma
Software for the use of the Software. In no event shall Simma Software be liable for any indirect, incidental, consequential, special, or

exemplary damages or lost profits, even if Simma Software has been advised of the possibility of such damages. SOME STATES DO

NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO CLIENT.

7. Governing Law. This License Agreement shall be construed and governed in accordance with the laws of the State of Indiana.

8. Severability. Should any court of competent jurisdiction declare any term of this License Agreement void or unenforceable, such

declaration shall have no effect on the remaining terms hereof.

9. No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party in the event

of any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequent actions in the
event of future breaches.

ssJ1939 User’s Manual - 3 -

TABLE OF CONTENTS

1.0 INTRODUCTION 4

2.0 INTEGRATION 5

3.0 SSCAN API 6

4.0 SSJ1939 API 10

5.0 CONFIGURATION 20

6.0 EXAMPLES 22

Chapter 1 Introduction

ssJ1939 User’s Manual - 4 -

Chapter 1

Introduction

ssJ1939 is high performance real-time SAE J1939 protocol stack written in ANSI C.

ssJ1939 adheres to both the SAE J1939 specification and to the software development

best practices described in the MISRA C guidelines. ssJ1939 has been used in more than

300 different real-time embedded systems and is standard and/or optional equipment on

vehicles of every major commercial OEM. ssJ1939 has been certified J1939 complaint

since 2008, has no reported failures in that time, and passed OEM integration testing with

zero errors.

ssJ1939 uses a modularized design with an emphasis on software readability and

performance. ssJ1939 is easy to understand and platform independent allowing it to be

used on any CPU or DSP with or without an RTOS. ssJ1939 has been shown to be up to

700% faster and 74% smaller than other commercially available J1939 protocol stacks.

ssJ1939 implements the data link layer and transport protocol described in J1939/21 and

the network management layer described in J1939/81. The application layer, described in

J1939/71, is the responsibility of the end user to implement. Examples of application

layer processing are provided in j1939app.c and at the end of this manual.

Filenames File Description

j1939.c Core source file for ssJ1939. Do not modify.

j1939.h Core header file for ssJ1939. Do not modify.

j1939tp.c Transport protocol source file. Do not modify.

j1939tp.h Transport protocol header file. Do not modify.

j1939app.c Application source file for ssJ1939. Modification allowed.

j1939app.h Application header file for ssJ1939. Modification allowed.

j1939cfg.h ssJ1939 configuration file. Modification allowed.

 Table 1-1: ssJ1939 files

Chapter 2 Integration of ssJ1939

ssJ1939 User’s Manual - 5 -

Chapter 2

Integration of ssJ1939

This chapter describes how to integrate ssJ1939 into your system. After this is complete,

you will be able to receive and transmit J1939 messages over CAN. For implementation

details, please see the chapters covering the APIs for J1939 and CAN.

Integration Steps:

1. Develop or purchase a CAN device driver which adheres to the CAN API

specified in Chapter 3.

2. Before using any of the J1939 module features, make sure the CAN driver has

been initialized by calling can_init(). Typically it is called shortly after power-on

reset and before the application is started.

3. Before using any of the ssJ1939 module features, make sure the ssJ1939 as been

initialized by calling j1939_init(). Typically it is called after can_init() and before

the application is started.

4. Call j1939_update at a fixed periodic interval (e.g. every 10 ms). This provides

the time base for the J1939 module. It is recommended that this function be

called at least every 25 ms.

5. Set J1939CFG_TICK_PERIOD, in j1939cfg.h, to your systems fixed periodic

interval described above in step #4.

6. Set your “Name field” in j1939cfg.h. See the Configuration chapter for details.

7. As needed adjust the number and size of the transport protocol buffers.

8. As needed place software in the function j1939app_process(), which is located in

j1939app.c, to receive and process incoming J1939 messages.

9. As needed, call j1939_tx_app() to transmit any J1939 message, including single

and multi-frame messages.

Chapter 3 CAN Hardware Abstraction Layer

ssJ1939 User’s Manual - 6 -

Chapter 3

CAN Hardware Abstraction

Layer

The hardware abstraction layer (HAL) is a software module that provides functions for

receiving and transmitting controller area network (CAN) data frames. Because CAN

peripherals typically differ from one microcontroller to another, this module is

responsible for encompassing all platform depended aspects of CAN communications.

The HAL contains three functions that are responsible for initializing the CAN hardware

and handling buffered reception and transmission of CAN frames.

Function Prototype Function Description

void can_init (void) Initializes CAN hardware

uint8_t can_rx (can_t *frame) Receives CAN frame (buffered I/O)

uint8_t can_tx (can_t *frame) Transmits CAN frame (buffered I/O)

 Table 3-1: HAL functions

3.1 Data Type Definitions

 Data type:
 can_t

 Description:
can_t is a data type used to store CAN frames. It contains the CAN frame

identifier, the CAN frame data, and the size of data. NOTE: If the most

significant bit of id (i.e. bit 31) is set, it indicates an extended CAN frame, else it

indicates a standard CAN frame.

 Definition:
 typedef struct {

 uint32_t id;

 uint8_t buf[8];

 uint8_t buf_len;

 } can_t;

Chapter 3 CAN Hardware Abstraction Layer

ssJ1939 User’s Manual - 7 -

3.2 Function APIs

 can_init

 Function Prototype:
 void can_init(void);

 Description:
can_init initializes the CAN peripheral for reception and transmission of CAN

frames at a network speed of 250 kbps. Any external hardware that needs to be

initialized can be done inside of can_init. The sample point should be as close

to 0.875 as possible, but should not exceed it. See J1939/11 and J1939/15 for

additional bit timing and sample point information.

 Parameters:
 void

 Return Value:
 void

Chapter 3 CAN Hardware Abstraction Layer

ssJ1939 User’s Manual - 8 -

 can_rx

 Function Prototype:
 uint8_t can_rx (can_t *frame);

 Description:
can_rx checks to see if there is a CAN data frame available in the receive buffer.

If one is available, it is copied into the can_t structure which is pointed to by

frame. If the most significant bit of frame->id (i.e. bit 31) is set, it indicates an

extended CAN frame, else it indicates a standard CAN frame.

 Parameters:
 frame: Points to memory where the received CAN frame should be stored.

 Return Value:
1: No CAN frame was read from the receive buffer.

0: A CAN frame was successfully read from the receive buffer.

Chapter 3 CAN Hardware Abstraction Layer

ssJ1939 User’s Manual - 9 -

 can_tx

 Function Prototype:
 uint8_t can_tx (can_t *frame);

 Description:
If memory is available inside of the transmit buffer, can_tx copies the memory

pointed to by frame to the transmit buffer. If transmission of CAN frames is not

currently in progress, then it will be initiated. If the most significant bit of

frame->id (i.e. bit 31) is set, it indicates an extended CAN frame, else it

indicates a standard CAN frame.

 Parameters:
 frame: Points to the CAN frame that should be copied to the transmit buffer.

 Return Value:
1: No CAN frame was written to the transmit buffer.

0: The CAN frame was successfully written to the transmit buffer.

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 10 -

Chapter 4

ssJ1939 Application

Program Interface

This chapter describes the application program interface (API) for the J1939 module.

Function Prototypes Function Descriptions

void j1939_init (void) Initializes protocol stack

void j1939_update (void) Provides periodic time base

void j1939app_process (j1939_t *msg) Processes received J1939 messages

uint8_t j1939_tx_app (j1939_t *msg, uint8_t *status) Transmits a J1939 message

uint8_t j1939_px (uint16_t,uint16_t,uint8_t(*f)(void)) Periodically transmits J1939 msg

void j1939_bip_tx_rate_allowed_set (uint8_t rate) Sets maximum transmit rate allowed

uint8_t j1939_bip_tx_rate_max_get (void); Retrieves peak bus load usage.

uint8_t j1939app_sa_get (void); Retrieves next source address

 Table 4-1: API functions

4.1 Data Type Definitions

 Data type:
 j1939_t

 Description:
j1939_t is a data type used to store J1939 messages. It contains the

J1939 message source, destination, PGN, priority, data, and the size of data.

 Definition:
 typedef struct {

 uint32_t pgn; /* Parameter Group Number. */

 uint8_t *buf; /* Pointer to data. */

 uint16_t buf_len; /* Size of data. */

 uint8_t dst; /* Destination of message. */

 uint8_t src; /* Source of message. */

 uint8_t pri; /* Priority of message. */

 } j1939_t;

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 11 -

j1939_init

 Function Prototype:
 void j1939_init (void);

 Description:
 Initializes the J1939 module.

 Parameters:
void

 Return Value:
void

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 12 -

j1939_update

 Function Prototype:
 void j1939_update (void);

 Description:
 Provides the periodic time base for the J1939 module.

 Parameters:
void

 Return Value:
void

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 13 -

 j1939app_process

 Function Prototype:
 void j1939app_process (j1939_t *msg);

 Description:
Processes received J1939 message. This function is called by the J1939 module

with a complete J1939 message and is the intended location for the application

layer to handle received J1939 messages. For multipacket messages, this

function isn’t called until all packets have been received and assembled into a

complete J1939 message.

 Parameters:
msg: Pointer to received J1939 message.

 Return Value
void

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 14 -

 j1939_tx_app

 Function Prototype:
 uint8_t j1939_tx_app (j1939_t *msg, uint8_t *status);

 Description:
Buffers a J1939 message for transmission. For messages that are larger than 8

bytes, the dst field of the j1939_t structure controls whether the message is

transmitted using the BAM or RTS/CTS procedures. Also, for messages larger

than 8 bytes, the application should set status to point to a variable in the

application’s RAM. *status will be equal to J1939TP_INPROCESS while the

message is being transmitted, J1939TP_DONE if the message transmission is

complete, or J1939TP_FAILED if there was an error.

 Parameters:
msg: Points to the J1939 message that should be transmitted.

status: Points to application RAM. Ignored for messages 8 bytes or less.

 Return Value:
1: Message was not buffered for transmission.

0: Message was buffered for transmission.

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 15 -

j1939_px

 Function Prototype:
 uint8_t j1939_px (uint16_t start, uint16_t period, uint8_t (*f)(void));

 Description:
Periodically transmits J1939 messages. This function allows users to request

transmission of a message periodically from 0 to 65535 update ticks (see

Configuration chapter for more information). For example, if an update rate is

configured for a 10 millisecond (ms) period, then this function allows the

repetitive transmission period to be between 0 and 65.535 seconds.

The stack statically creates an internal array of function points, period holding

variable, and timer. Size of the static array is described in the configuration

chapter. Ever time the ssJ1939 updates, it iterates through the array

decrementing the timers. When a timer reaches zero, it executes the

corresponding function. If the function returns success, the timer is reloaded

from the period holding variable, else it is reloaded with a 1 to for another

attempt next stack update.

NOTE: Applications should periodically transmit messages back to back. For

example, if you have 5 messages that are all transmitted every 100 ms, do not

call the j1939_px function with any two having the same start time. In other

words, all 100 ms messages should have a unique start value which ensure their

timers are out of phase.

 Parameters:
Start: Initial timer value.

Period: Transmission period.

F: Function pointer.

 Return Value:
1: Message was not added to internal array.

0: Message was added to internal array.

 Example:
void

j1939app_init (void)

{

 j1939_px(10, 100, j1939app_tx_pgn_65222);

 j1939_px(20, 100, j1939app_tx_pgn_64300);

 j1939_px(30, 100, j1939app_tx_pgn_65522);

}

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 16 -

j1939_bip_tx_rate_allowed_set

 Function Prototype:
 void j1939_bip_tx_rate_allowed_set (uint8_t rate);

 Description:
In order to implement babbling idiot protection, the J1939 module tracks how

many messages are transmitted by the application in a 250 ms window. If the

J1939 module detects the application has transmitted more messages than is

allowed, it will permanently disable transmission. The application should use

this function to set the J1939 module’s allowable transmission rate (default of

25%). Set rate to 100% to disable babbling idiot protection.

 Parameters:
rate: Max allowed transmission rate. Range from 0 to 100 percent.

 Return Value
void

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 17 -

 j1939_bip_tx_rate_max_get

 Function Prototype:
 uint8_t j1939_bip_tx_rate_max_get (void);

 Description:
In order to implement babbling idiot protection, the J1939 module tracks how

many messages are transmitted by the application in a 250 ms window. The

application can use this function to retrieve the max bus load that has been

imposed on the bus by the application.

 Parameters:
void

 Return Value
0 to 100 percent

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 18 -

j1939app_tx_request

 Function Prototype:
 uint8_t j1939app_tx_request (uint32_t pgn, uint8_t dst);

 Description:
Example function which transmits a request for a PGN. The dst field determines

if a global request or destination specific request for a parameter group number

(PGN) is sent.

 Parameters:
pgn: PGN to be requested.

dst: Destination address of request. Use 255 to send request to all nodes. In the

 J1939 specification, address 255 is the defined to be the global address

 representing all nodes.

 Return Value:
1: Message was not buffered for transmission.

 0: Message was buffered for transmission.

Chapter 4 ssJ1939 Application Program Interface

ssJ1939 User’s Manual - 19 -

j1939app_sa_get

 Function Prototype:
 uint8_t j1939app_sa_get (void);

 Description:
This function returns the next source address that the protocol stack should

attempt to claim. It is called when the protocol stack fails to claim it's default

address, as defined by J1939CFG_SA.

Since the protocol stack has no knowledge of what additional addresses it may

claim, it calls this routine which is maintained by the application layer. When

the application layer has no more addresses to claim, this function should return

255.

 Parameters:
void

 Return Value
Next source address. 255 indicates no more addresses are available.

Chapter 5 Configuration

ssJ1939 User’s Manual - 20 -

Chapter 5

Configuration

This chapter describes all configurable items of the J1939 module. All of these

configurations are defined in j1939cfg.h.

J1939 Update Rate
The update rate is a fixed periodic interval in tenths of a milliseconds, see steps #4 and #5

in Chapter 2, at which the j1939_update function is called. Its default value is 100, which

represents 10 milliseconds. Minimum value is 1 (0.1 milliseconds) and the recommended

maximum is 250 (25 milliseconds).

#define J1939CFG_TICK_PERIOD 100

J1939 Source Address
The source address is a 8-bit field and identifies a unique J1939 device on the network.

Its default value is set to an experimental ECU, but should be changed to match it’s

actual function. Possible values are listed in the J1939 parent document.

#define J1939CFG_SA J1939_SA_EXPERIMENTAL_USE

Transport Protocol RX Buffer Count
Multipacket J1939 messages are split into multiple CAN frames and buffered inside of

the J1939 module. This configuration defines how many incoming multipacket messages

can be received simultaneously.

#define J1939CFG_TP_RX_BUF_NUM 10

Transport Protocol RX Buffer Size
Multipacket J1939 messages are split into multiple CAN frames and buffered inside of

the J1939 module. This configuration defines in bytes the largest message which can be

received. The maximum buffer size is1,785 bytes.

#define J1939CFG_TP_RX_BUF_SIZE 128

Chapter 5 Configuration

ssJ1939 User’s Manual - 21 -

Transport Protocol TX Buffer Count
Multipacket J1939 messages are split into multiple CAN frames and buffered inside of

the J1939 module. This configuration defines how many outgoing multipacket messages

can be transmitted simultaneously.

#define J1939CFG_TP_TX_BUF_NUM 3

Transport Protocol TX Buffer Size
Multipacket J1939 messages are split into multiple CAN frames and buffered inside of

the J1939 module. This configuration defines in bytes the largest message which can be

transmitted. The maximum buffer size is1,785 bytes.

#define J1939CFG_TP_TX_BUF_SIZE 128

J1939 Name Field
The J1939 name field is 64 bits long and is intended to uniquely describe all ECUs on a

J1939 network (i.e. no two ECUs on a J1939 network may have the same name field).

For more information, see J1939/81 section 4.1.

#define J1939CFG_N_AAC 0 /* 1-bit Arbitrary Address Capable */

#define J1939CFG_N_IG 0 /* 3-bit Industry Group */

#define J1939CFG_N_VSI 0 /* 4-bit Vehicle System Instance */

#define J1939CFG_N_VS 0 /* 7-bit Vehicle System */

#define J1939CFG_N_F 0 /* 8-bit Function */

#define J1939CFG_N_FI 0 /* 5-bit Function Instance */

#define J1939CFG_N_EI 0 /* 3-bit ECU Instance */

#define J1939CFG_N_MC 0 /* 11-bit Manufacturer Code */

#define J1939CFG_N_IN 0 /* 21-bit Identity Number */

Chapter 6 Examples

ssJ1939 User’s Manual - 22 -

Chapter 6

Examples

This chapter gives examples of how to receive/decode J1939 messages, how to transmit a

J1939 message, and to transmit requests periodically. Per the J1939 specification all

J1939 messages have an associated PGN followed by data. The below examples show

how to filter based on the PGN of interest and decode the data.

All application layer PGNs, the parameters contained in the specific PGN, the

parameter’s size and location (i.e. offset) inside of the message buffer are fully specified

and documented inside of SAE J1939-71. For example, J1939-71 specifies the parameter

‘Engine Speed’ to be transmitted inside of PGN 61444, to be two bytes in size, and to be

located in the 2nd and 3rd bytes of the message buffer (i.e. data field). Receiving and

decoding of ‘Engine Speed’ is show below, in the second case of the switch statement.

The below buffer conversion macros, btou8(), btou16(), and btou32() handle converting a

buffer to an uint8_t, uint16_t, and to an uint32_t. The main purpose of the macros,

instead of explicit C statements, is to reduce the chances of an error and development

time.

6.1 Receive and Decode J1939 Messages Example:

void

j1939app_process (j1939_t *msg)

{

 switch(msg->pgn) {

 /* -PGN- -CUSTOMER VARIABLE- -BUFFER CONVERSION- */

 case 61443: j1939_accel_position = btou8(&msg->buf[1]); break;

case 61444: j1939_engine_speed = btou16(&msg->buf[3]); break;

case 65244: j1939_idle_fuel_used = btou32(&msg->buf[0]); break;

case 65248: j1939_vehicle_distance = btou32(&msg->buf[4]); break;

case 65253: j1939_total_engine_hours = btou32(&msg->buf[0]); break;

case 65257: j1939_total_fuel_used = btou32(&msg->buf[4]); break;

case 65262: j1939_coolant_temp = btou8(&msg->buf[0]); break;

case 65263: j1939_oil_pressure = btou8(&msg->buf[3]); break;

case 65265: j1939_vehicle_speed = btou16(&msg->buf[1]); break;

case 65266: j1939_avg_fuel_econ = btou16(&msg->buf[4]); break;

case 65276: j1939_fuel_level = btou8(&msg->buf[1]); break;

 }

}

Chapter 6 Examples

ssJ1939 User’s Manual - 23 -

6.2 Transmit J1939 Message Example - Single Frame:

void

j1939_transmit_example (void)

{

 j1939_t msg;

 uint8_t buf[8] = {0,1,2,3,4,5,6,7};

 /* load message */

 msg.pgn = 65215;

 msg.buf = buf;

 msg.buf_len = 8;

 msg.dst = 255;

 msg.pri = 7;

 /* transmit message */

 if(j1939_tx_app(&msg, 0) == 0)

 printf("Message transmitted\n");

 else

 printf("Message not transmitted\n");

}

6.3 Transmit J1939 Message: Multi-frame

void

j1939_transmit_example (void)

{

 j1939_t msg;

 uint8_t buf[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

 /* load message */

 msg.pgn = 65215;

 msg.buf = buf;

 msg.buf_len = 16;

 msg.pri = 7;

 /* 255 sends a multi-frame to global (i.e. BAM) message. Using a nodes address, like

 0 for the engine, specifies a destination specific multi-frame (RTS/CTS) */

 msg.dst = 255;

 /* transmit message */

 if(j1939_tx_app(&msg, 0) == 0)

 printf("Message transmitted\n");

 else

 printf("Message not transmitted\n");

}

Chapter 6 Examples

ssJ1939 User’s Manual - 24 -

6.4 Periodically Request J1939 Parameters Example:

The below example shows how to transmit requests, for PGNs 65253, 65244, and 65257,

periodically using the built-in example function j1939app_tx_request(). The requests are

sent every 5 seconds with a 1 second spacing. The below routine assumes the protocol

stack’s update function is called every 1 millisecond.

void

j1939app_update (void)

{

static uint16_t time = 0;

/* transmit requests every 5 seconds */

switch(time++) {

 case 1000: j1939app_tx_request(65253, 255); break;

 case 2000: j1939app_tx_request(65244, 255); break;

 case 3000: j1939app_tx_request(65257, 255); break;

 case 5000: time = 0;

}

}

