
J1939 Bootloader

Our J1939 Bootloader provides a universal and compact solution for reprogramming ECUs quickly,
efficiently and securely. Our bootloaders have been in use worldwide for over fifteen years, beginning with
J1939 and CAN based system. The embedded firmware has been split into three parts:

The PC bootloader application, named flashJ1939.exe, works with Simma Software VNA-Value low-cost
J1939 to USB adapter to send the new flash image across the J1939 network. flashJ1939 allows the user to
specify the J1939 address of the target ECU and the s-record or hex file to be used.

Example: flashJ1939 232 1 app.srec

When the CPU comes out of reset, the bootloader decides if there is valid application software. If there isn’t,
the flash loader is started and attempts to receive an application over the J1939 network. If there was a
valid application, the application is started. Additional, the application has the ability to start the bootloader.
This is typically done if the application receives a start command over the J1939 network.

The midpoint tables allow for abstraction between the application and the bootloader. The tables contain
the following information: start addresses for the application and bootloader, application checksum value,
application is present flag, and bootloader version number. These tables reside at a fix memory location in
flash and should not be moved. If tables are moved, future versions of application code may not be
backwards compatible with previous versions of bootloaders. Also, due to the S12X family 16-bit
architecture both tables must reside in non-banked memory.

1) Bootloader

2) Midpoint tables

3) Application

Simma Software, Inc

5940 South Ernest Drive

Terre Haute, IN 47802

Toll Free: 888-256-3828

Fax: 208-445-2913

www.simmasoftware.com

Simma Software, Inc. specializes in real-time embedded software for the automotive industry.   

Products and services include protocol stacks, bootloaders, device drivers, training, and
consultation on the following technologies:   

J1939, CAN, J1587, J1708, J2497, J1922, ISO 15765, CANopen, UDS, XCP, LIN.

Page 01

1.1 J1939 Bootloader Overview:

1.2 flashJ1939:

Created by the J1939 Experts

Memory Layout

Category Start End

Application Area #1 0x78_0000 0x7F_3FFF

Midpoint Tbl – App 0x7F_4000 0x7F_400F

Application Area #2 0x7F_4010 0x7F_BFFF

Midpoint Tbl - BL 0x7F_C000 0x7F_C00F

Bootloader 0x7F_C010 0x7F_FFFF

https://www.simmasoftware.com/products/j1939/

The bootloader only supports linear global addressing. Therefore, any s-record sent across the
J1939 network must not use banked addressing.

The application checksum is currently generated via flashJ1939 when reading in the application
file. It is then sent across the network and stored into flash memory so application validation can
happen every power cycle.

1.3.2

1.3.1

Step 1:  
When an ECU is going to be programmed using the method described in this document, the first thing the
PC needs to do is request the boot version of the target ECU system. This allows the PC or the user to
decide if the new software, which is destined for the ECU, is compatible with the current boot version. If the
entire flash is being updated, the boot version can be ignored since the new boot manager will overwrite the
old boot manager.

Step 2:  
The second message that is sent to the ECU will be either ‘start programming entire flash’ or ‘start
programming application flash.’ The PC should then wait for a ‘request for data’ from the ECU. If the PC has
not received the response, it may resend indefinitely, each time waiting for a ‘request for data.’

Step 3: (J1939) 
Next, the PC should send one address packet followed by at most twelve data packets. The address packet
contains the number of following data bytes and also the starting address for the data. The sequence
number in the address packet should match the sequence number in the first data packet, and then
increment for each additional data packet. The sequence number ranges from 0 to 255, and overflows to 0.
After sending the address and data packets, the PC should wait for another ‘request for data.’ This process
continues until the PC has no more available data to supply the ECU. For the last transmission, it is
anticipated that the PC probably will not have a full set of twelve packets to send. The ECU will respond be
requesting data packets at the point where the PC halted transmission. If the requests are for unavailable
data, the PC should ignore them.

Step 4: 
The PC should now transmit a ‘stop programming flash’ message with the set and sequence number of the
last available data packet. The PC waits for an ‘acknowledge’, and may resend until an ‘acknowledge’ is
received.

Step 5: 
This step is optional. Once the entire programming session has been completed, the ECU should reset itself.
The PC waits for this to occur, then listens to the communications network for messages being sent out
from the ECU. If no messages are being broadcast from the ECU, the PC may request data from the ECU.
Once the PC has received messages from the ECU, it should display a ‘programming successful’ message to
the user.

Simma Software, Inc

5940 South Ernest Drive

Terre Haute, IN 47802

Toll Free: 888-256-3828

Fax: 208-445-2913

www.simmasoftware.com

Simma Software, Inc. specializes in real-time embedded software for the automotive industry.   

Products and services include protocol stacks, bootloaders, device drivers, training, and
consultation on the following technologies:   

J1939, CAN, J1587, J1708, J2497, J1922, ISO 15765, CANopen, UDS, XCP, LIN.

1.3 Points of Interest for Bootloader:

1.4 Programming Message Flow Overview:

Page 02

Simma Software, Inc

5940 South Ernest Drive

Terre Haute, IN 47802

Toll Free: 888-256-3828

Fax: 208-445-2913

www.simmasoftware.com

Simma Software, Inc. specializes in real-time embedded software for the automotive industry.   

Products and services include protocol stacks, bootloaders, device drivers, training, and
consultation on the following technologies:   

J1939, CAN, J1587, J1708, J2497, J1922, ISO 15765, CANopen, UDS, XCP, LIN.

1.5 J1939 Packet Structure:

Page 03

The Proprietary A PGN (PDU1) is used for the J1939 bootloader, this packet has a PGN of 61184. There are
three types of packets: Address (PPGN of 5), Data (PPGN of 3), and Command packets (PPGN of 4). Data is
sent most significant byte first, and all data is unsigned except where noted.

CAN 29-Bit ID Data[0..7]

PGN PPGNDST Parameters[0..6]SRC

Address Packets:

 PPGN equals 5:

 Parm[0]: sequence number of packet. Range is from 0 to 255.

 Parm[1]: number of data bytes in following data packets.

 Parm[2-5]: 32-bit starting address for following data

Data Packets:

 PPGN equals 3:

 Parm[0]: sequence number of packet. Range is from 0 to 255.

 Parm[1-6]: data bytes

Command Packets:

 PPGN equals 4:

 Parm[0] equals 1: Start programming entire flash

 DLC: 3 bytes

 Notes: Parm[1] reserved for future use

 Parm[0] equals 2: Start programming application flash

 DLC: 3 bytes

 Notes: Parm[1] reserved for future use

 Parm[0] equals 3: Stop programming flash

 DLC: 3 bytes

 Parm[1]: sequence number of last data packet

 Parm[0] equals 4: Request for command packet

 DLC: 3 bytes

 Parm[1]: PID for information (non-data) being requested

 Parm[0] equals 5: Acknowledge

 DLC: 7 bytes

 Parm[1]: PID of packet being acknowledged

 Parm[0] equals 6: Flash Erase Error

 DLC: 3 bytes

 Parm*1+: Flash error code (refer to Motorola’s an2720.pdf or flash.h for error codes)

 Parm[0] equals 7: Flash Write Error

 DLC: 3 bytes

 Parm*1+: Flash error code (refer to Motorola’s an2720.pdf or flash.h for error codes)

 Parm[0] equals 8: Boot manager version

 DLC: 4 bytes

 Parm[1-2]: Boot manager version in binary. Represents 0.0 to 255.255

 Parm[0] equals 9: Request for data

 DLC: 3 or 7 bytes

 Note: On first requests, the recommended start address may be available.

 Parm[1]: sequence number being requested

 Parm[2-5]: recommended start address for the data being requested

