

ssCANopen
User’s Manual

Created by the CANopen Experts!
Version 2.0 – January 1, 2017

© Copyright 2017 - Simma Software, Inc.

 P a g e 2 | 55

ssCANopen User’s Manual

ssCANopen Protocol Stack License

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE OPENING THE PACKAGE
CONTAINING THE PROGRAM DISTRIBUTION MEDIA (DISKETTES, CD, ELECTRONIC MAIL), THE COMPUTER SOFTWARE
THEREIN, AND THE ACCOMPANYING USER DOCUMENTATION. THIS SOURCE CODE IS COPYRIGHTED AND LICENSED
(NOT SOLD). BY OPENING THE PACKAGE CONTAINING THE SOURCE CODE, YOU ARE ACCEPTING AND AGREEING TO
THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THE TERMS OF THIS LICENSE
AGREEMENT, YOU SHOULD PROMPTLY RETURN THE PACKAGE IN UNOPENED FORM, AND YOU WILL RECEIVE A
REFUND OF YOUR MONEY. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING THE
CANOPEN PROTOCOL STACK BETWEEN YOU AND SIMMA SOFTWARE, INC. (REFERRED TO AS "LICENSOR"), AND IT
SUPERSEDES ANY PRIOR PROPOSAL, REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES.

1. Corporate License Grant. Simma Software hereby grants to the purchaser (herein referred to as the “Client”), a royalty free, non-
exclusive license to use the CANopen protocol stack source code (collectively referred to as the "Software”) as part of Client’s
product. Except as provided above, Client agrees to not assign, sublicense, transfer, pledge, lease, rent, or share the Software
Code under this License Agreement.

2. Simma Software's Rights. Client acknowledges and agrees that the Software and the documentation are proprietary products of
Simma Software and are protected under U.S. copyright law. Client further acknowledges and agrees that all right, title, and interest
in and to the Software, including associated intellectual property rights, are and shall remain with Simma Software. This License
Agreement does not convey to Client an interest in or to the Software, but only a limited right of use revocable in accordance with
the terms of this License Agreement.

3. License Fees. The Client in consideration of the licenses granted under this License Agreement will pay a one-time license fee.

4. Term. This License Agreement shall continue until terminated by either party. Client may terminate this License Agreement at
any time. Simma Software may terminate this License Agreement only in the event of a material breach by Client of any term
hereof, provided that such shall take effect 60 days after receipt of a written notice from Simma Software of such termination and
further provided that such written notice allows 60 days for Client to cure such breach and thereby avoid termination. Upon
termination of this License Agreement, all rights granted to Client will terminate and revert to Simma Software. Promptly upon
termination of this Agreement for any reason or upon discontinuance or abandonment of Client’s possession or use of the Software,
Client must return or destroy, as requested by Simma Software, all copies of the Software in Client’s possession, and all other
materials pertaining to the Software (including all copies thereof). Client agrees to certify compliance with such restriction upon
Simma Software’s request.

5. Limited Warranty. Simma Software warrants, for Client’s benefit alone, for a period of one year (called the “Warranty Period”)
from the date of delivery of the software, that during this period the Software shall operate substantially in accordance with the
functionality described in the User's Manual. If during the Warranty Period, a defect in the Software appears, Simma Software will
make all reasonable efforts to cure the defect, at no cost to the Client. Client agrees that the foregoing constitutes Client’s sole and
exclusive remedy for breach by Simma Software of any warranties made under this Agreement. Simma Software is not responsible
for obsolescence of the Software that may result from changes in Client’s requirements. The foregoing warranty shall apply only to
the most current version of the Software issued from time to time by Simma Software. Simma Software assumes no responsibility
for the use of superseded, outdated, or uncorrected versions of the licensed software. EXCEPT FOR THE WARRANTIES SET
FORTH ABOVE, THE SOFTWARE, AND THE SOFTWARE CONTAINED THEREIN, ARE LICENSED "AS IS," AND SIMMA
SOFTWARE DISCLAIMS ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6. Limitation of Liability. Simma Software's cumulative liability to Client or any other party for any loss or damages resulting from
any claims, demands, or actions arising out of or relating to this License Agreement shall not exceed the license fee paid to Simma
Software for the use of the Software. In no event shall Simma Software be liable for any indirect, incidental, consequential, special,
or exemplary damages or lost profits, even if Simma Software has been advised of the possibility of such damages. SOME STATES
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO CLIENT.

7. Governing Law. This License Agreement shall be construed and governed in accordance with the laws of the State of Indiana.

8. Severability. Should any court of competent jurisdiction declare any term of this License Agreement void or unenforceable, such
declaration shall have no effect on the remaining terms hereof.

9. No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party in the
event of any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequent
actions in the event of future breaches.

 P a g e 3 | 55

ssCANopen User’s Manual

TABLE OF CONTENTS

1 INTRODUCTION....…………………………………………………………….…........... 5

2 INTEGRATION OF SSCANOPEN..…………………………………………………. 6

3 SSCAN DRIVER API..…………………………………………………………………….. 7

3.1 DATA TYPE DEFINITIONS….……………………………………………………………. 8

3.2 FUNCTION APIS……….....…………………………………….................................. 8

3.2.1 CAN_INIT………………………………………………………………………... 8

3.2.2 CAN_RX……………………………………………………….......................... 9

3.2.3 CAN_TX…………………………………………………………………………10

4 SSCANOPEN API…………………………………………………………………………. 11

4.1 DATA TYPE DEFINITIONS……………………………………………………………… 12

4.1.1 RPDO_T..12

4.1.2 TPDO_T…………………………………………………………………………13

4.1.3 INDEX_T………………………………………………………………………...14

4.1.4 SUBINDEX_T……………………………………………………………………15

4.1.5 COD_T…………………………………………………………………………. 16

4.1.6 COD_SUBINDEX_T…………………………………………………………….. 17

4.1.7 COB_T…………………………………………………………………………..18

4.1.8 CANOPEN_TIMESTAMP_T…………………………………………………….. 19

4.1.9 OD_DEFAULT_ENTRY……...………………………………………………......20

4.1.10 NSD_T (MASTER ONLY)………………………………………………………..21

4.2 API FUNCTIONS………………………………………………................................... 22

4.2.1 CANOPEN_INIT…………………………………………………………………22

4.2.2 CANOPEN_UPDATE…………………………………………………………….23

4.2.3 CANOPEN_PROCESS…………………………………………………………..24

4.2.4 CANOPEN_TX_TPDO…………………………………………………………...25

4.2.5 CANOPEN_SET_ERROR………………………………………………………..26

4.2.6 CANOPEN_CLEAR_ERRORS……………………………………………………27

4.2.7 CANOPEN_SET_STATE…………………………………………………………28

 P a g e 4 | 55

ssCANopen User’s Manual

4.2.8 CANOPEN_READ_OD…………………………………………………………. 29

4.2.9 CANOPEN_WRITE_OD………………………………………………………….30

4.2.10 CANOPEN_READ_REMOTE_OD………………………………………………..31

4.2.11 CANOPEN_WRITE_REMOTE_OD……………………………………………….32

4.2.12 CANOPEN_SYNC_ENABLE………………………………………………..……33

4.2.13 CANOPEN_SYNC_DISABLE…………………………………………………….34

4.2.14 CANOPEN_SET_STATE_REMOTE_NODE (MASTER ONLY)…………………...35

4.3 APPLICATION CALLBACK FUNCTIONS……………………...35

4.3.1 CANOPEN_APP_PROCESS……………………………………………………..36

4.3.2 CANOPEN_APP_UPDATE……………………………………………………….37

4.3.3 CANOPEN_APP_TIME…………………………………………………………..38

4.3.4 CANOPEN_APP_WILL_CHANGE_STATE……………………………………….39

4.3.5 CANOPEN_APP_SYNC………………………………………………………….40

4.3.6 CANOPEN_APP_HANDLE_SDO………………………………………………...41

4.3.7 CANOPEN_APP_WRITE_OD_QUALIFY…………………..……………………...42

4.3.8 CANOPEN_APP_WRITE_OD…….……………………………………………...43

4.3.9 CANOPEN_APP_READ_OD……..……………………………………………...44

4.3.10 CANOPEN_APP_RESET_COMM…………..….………………………………...45

4.3.11 CANOPEN_APP_SAVE………………………..………………………………...46

4.3.12 CANOPEN_APP_LOAD_DEFAULTS……………..……………………………...47

4.3.13 CANOPEN_APP_SAVE_DEFAULTS……………..……………………………...48

4.3.14 CANOPEN_APP_MAPPABLE…………………….……………………………...49

5 CONFIGURATION…………………………………………………............................ 50

5.1 Requirements………………………………………………………………………….50

5.2 Project Settings………………………………………………………………………..50

5.3 Device Settings………………………………………………………………………..52

5.4 Object Dictionary………………………………………………………………………53

6 EXAMPLES………………………………………………………………………….…… 55

6.1 EXAMPLE: SLAVE-ENGINE HOURS…………………………………...........................55

6.2 EXAMPLE: MASTER……………………………………….….……….........................55

 P a g e 5 | 55

ssCANopen User’s Manual

Chapter 1: Introduction

Chapter 1: Introduction

ssCANopen is a high performance CANopen protocol stack written in ANSI C. ssCANopen
adheres to both the SAE CANopen specification and to the software development best practices
described in the MISRA C guidelines.

ssCANopen is a modularized design with an emphasis on software readability and performance.
ssCANopen is easy to understand and platform independent allowing it to be used on any CPU
or DSP with or without an RTOS. ssCANopen has been shown to be up to 500% faster and
61% smaller than other commercially available CANopen protocol stacks.

ssCANopen implements the data link layer described in CIA 301. See that document for a
complete understanding of the CANopen protocol and specification.

ssCANopen also implements NMT Master behavior, node boot-up process, SYNC producer,
and TIME producer as described in CIA DSP-302. See that document for a complete
understanding of those additional specifications.

Filenames File Description

canopen.c Core source file for ssCANopen. Do not modify.

canopen.h Core header file for ssCANopen. Do not modify.

canopen_cfg.c ssCANopen configuration file. Modification allowed.

canopen_cfg.h ssCANopen configuration header file. Modification allowed.

canopen_app.c End user application. Modification allowed.

canopen_app.h End user application. Modification allowed.

Table 1-1: ssCANopen files

 P a g e 6 | 55

ssCANopen User’s Manual

Chapter 2: Integration of ssCANopen

Chapter 2: Integration of ssCANopen

This chapter describes how to integrate ssCANopen into your application. After this is
complete, you will be able to receive and transmit CANopen messages over CAN. For
implementation details, please see the chapters covering the APIs for CANopen and CAN.

Integration Steps:

1. Develop or purchase a CAN device driver which adheres to the CAN API specified in
Chapter 3.

2. Before using any of the CANopen module features, make sure the CAN driver has been
initialized by calling can_init(). Typically, it is called shortly after power-on reset and
before the application is started.

3. Before using any of the ssCANopen module features, make sure ssCANopen has been
initialized by calling canopen_init(). Typically it is called after can_init() and before the
application is started.

4. Call canopen_update() at a fixed periodic interval (e.g. every 10 ms). This provides the
time base for the CANopen module. It is recommended that this function be called at
least every 25 ms.

5. Use the configuration tool to set the key CANopen settings and export them into
canopen_cfg.c and canopen_cfg.h files. These files define the CANopen device’s object
dictionary and key configuration values. Base master and slave profiles are provided as
a starting point for creating your device profile. See the Configuration and Examples
chapters for full details.

a. Set your system’s fixed periodic interval described above in step #4.

b. Set the number of CAN networks that will be used (minimum 1).

c. Set the device mode. Mirrored will create one CANopen device which sends and
receives on all CAN networks. Independent will create an independently
configured and operating CANopen device for each network.

d. Set your CANopen node ID between 1 and 127.

e. As needed add and/or customize entries in the object dictionary.

f. As needed add PDO and PDO mapping entries in the object dictionary for all
RPDOs and TPDOs the device will support.

g. Export the canopen_cfg.c and canopen_cfg.h files from the configuration tool.

6. (Optional) Implement canopen_app_handle_sdo() to use SDO client functionality.

7. (Optional) Implement canopen_app_time() to support synchronizing the device to
network time.

 P a g e 7 | 55

ssCANopen User’s Manual

Chapter 3: ssCAN Driver API

Chapter 3: ssCAN Driver API

The controller area network (CAN) driver application program interface (API) is a software
module that provides functions for receiving and transmitting controller area network (CAN) data
frames. Because CAN peripherals typically differ from one microcontroller to another, this
module is responsible for encompassing all platform dependent aspects of CAN
communications.

The CAN Driver API contains three functions that are responsible for initializing the CAN
hardware and handling buffered reception and transmission of CAN frames.

Function Prototype Function Description

void can_init (void) Initializes CAN hardware

uint8_t can_rx (uint8_t p, can_t *frame) Receives CAN frame (buffered I/O)

uint8_t can_tx (uint8_t p, can_t *frame) Transmits CAN frame (buffered I/O)

Table 3-1: HAL functions

3.1 Data Type Definitions

Data type:

can_t

Description:

can_t is a data type used to store CAN frames. It contains the CAN frame identifier, the
CAN frame data, the size of data, and CAN network number.

NOTE: If the most significant bit of id (i.e. bit 31) is set, it indicates an extended CAN frame,
else it indicates a standard CAN frame.

Definition:

typedef struct {

 uint32_t id;
 uint8_t buf [8];
 uint8_t buf_len;

} can_t;

 P a g e 8 | 55

ssCANopen User’s Manual

Chapter 3: ssCAN Driver API

3.2 Function APIs

3.2.1 can_init

 Function Prototype:

 Description:
 can_init initializes the CAN peripheral for reception and transmission of CAN
 frames at a network speed of 250 kbps. Any external hardware that needs to
 be initialized can be done inside of can_init. The sample point should be as
 close to 0.875 as possible, but should not exceed it. See CANOPEN/11 and
 CANOPEN/15 for additional bit timing and sample point information.

 Parameters:
 void

 Return Value:
 void

void can_init(
 void
);

 P a g e 9 | 55

ssCANopen User’s Manual

Chapter 3: ssCAN Driver API

3.2.2 can_rx

 Function Prototype:

Description:
can_rx checks to see if there is a CAN data frame available in the receive buffer. If
one is available, it is copied into the can_t structure which is pointed to by frame. If the
most significant bit of frame->id (i.e. bit 31) is set, it indicates an extended CAN frame,
else it indicates a standard CAN frame.

 Parameters:
 frame: Points to memory where the received CAN frame should be stored.

 Return Value:
 1: No CAN frame was read from the receive buffer.

 0: A CAN frame was successfully read from the receive buffer.

uint8_t can_rx (
 can_t *frame
);

 P a g e 10 | 55

ssCANopen User’s Manual

Chapter 3: ssCAN Driver API

 3.2.3 can_tx

 Function Prototype:

 Description:
 If memory is available inside of the transmit buffer, can_tx copies the memory
 pointed to by frame to the transmit buffer. If transmission of CAN frames is not
 currently in progress, then it will be initiated. If the most significant bit of
 frame->id (i.e. bit 31) is set, it indicates an extended CAN frame, else it
 indicates a standard CAN frame.

 Parameters:
 frame: Points to the CAN frame that should be copied to the transmit buffer.

 Return Value:
 1: No CAN frame was written to the transmit buffer.
 0: The CAN frame was successfully written to the transmit buffer.

uint8_t can_tx (
 can_t *frame
);

 P a g e 11 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

Chapter 4: ssCANopen API

This chapter describes the application program interface (API) for the CANopen module.

Function Prototypes Function Descriptions

void canopen_init (void) Initializes protocol stack

void canopen_update (void) Provides periodic time base

void canopen_process (uint8_t net, canopen_t *msg) Processes received CANopen
messages

void canopen_tx_tpdo(uint8_t net, uint8_t n) Transmits an event based TPDO

void canopen_set_error (uint8_t net, uint16_t
emcy_code, uint8_t *mfg_code)

Set error state

void canopen_clear_errors (uint8_t net) Reset error state

uint8_t canopen_set_state (uint8_t net, uint8_t
canopen_nmt_state)

Set device operational state

void canopen_read_od(uint8_t net, uint16_t index,
uint8_t subindex, uint8_t *buf, uint8_t *len)

Read local object dictionary entry

void canopen_write_od(uint8_t net, uint16_t index,
uint8_t subindex, uint8_t *buf, uint8_t len)

Write local object dictionary entry

void canopen_read_remote_od(uint8_t net, uint8_t
node_id, uint16_t index, uint8_t subindex)

Read remote object dictionary
entry (SDO client)

void canopen_write_remote_od(uint8_t net, uint8_t
node_id, uint16_t index, uint8_t subindex, uint8_t
*buf, uint8_t len)

Write remote object dictionary
entry (SDO client)

void canopen_sync_enable(uint8_t net) Enable SYNC producer

void canopen_sync_disable(uint8_t net) Disable SYNC producer

void canopen_set_state_remote_node(uint8_t net,
uint8_t node_id, uint8_t canopen_nmt_state)

Set remote node state (Master
only)

Table 4-1: API functions

 P a g e 12 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1 Data Type Definitions

4.1.1 rpdo_t

 Description:
rpdo_t is a data type used to store RPDO configuration information. It contains the
command byte, the position in canopen_od, and the number of object dictionary
entries it spans.

 Definition:

typedef struct{

 uint8_t com;
 uint8_t entry;
 uint8_t entr ies;

} rpdo_t;

 P a g e 13 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.2 tpdo_t

Description:

TPDO_t is a data type used to store TPDO configuration information. It contains the
command byte, the position in canopen_od, and the number of object dictionary
entries it spans. It also stores the timestamps for event and inhibit timers, if enabled.

Definition:

typedef struct{

 uint8_t com;
 uint8_t entry;
 uint8_t entr ies;
 uint8_t type;
 uint16_t event_t imestamp;
 uint16_t inhibit_t imestamp;

} tpdo_t;

 P a g e 14 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.3 index_t

Description:

index_t is a data type used to store each dynamic object dictionary entry. It contains
the object dictionary index (no correlation to position in array), subindex array, and the
number of subindexes allocated. canopen_od is an array of this data type.

Definition:

typedef struct {

 uint16_t index;
 uint8_t subindexes;
 subindex_t *subindex;

} index_t;

 P a g e 15 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.4 subindex_t

Description:

subindex_t is a data type used to store each dynamic object dictionary subindex entry.
It contains the number of data elements and array of up to 4 bytes of data. Each index
in canopen_od contains an array of this data type.

Definition:

typedef struct {

 uint8_t len;
 uint8_t *data;

} subindex_t;

 P a g e 16 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.5 cod_t

Description:

cod_t is a data type used to store each constant object dictionary entry. It contains
the index, the number of subindexes, and an array of subindex entries. canopen_od is
an array of this data type.

Definition:

typedef struct {

 uint16_t index;
 uint8_t num_subindexes;
 cod_subindex_t *subindexes;

} cod_t;

 P a g e 17 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.6 cod_subindex_t

Description:

cod_subindex_t is a data type used to store each object dictionary subindex entries.
It contains a command byte and up to 32 bits of data. Each index in canopen_cod
contains an array of this data type.

Definition:

typedef struct {

 uint8_t cmd;
 uint8_t *data;

} cod_subindex_t;

 P a g e 18 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.7 cob_t

Description:

COB_t is a data type used to store a communication object (COB). It contains the
function code, source address, the number of data bytes, and up to 8 bytes of data.
Incoming CANopen messages are passed to the application layer using this object.

Definition:

typedef struct {

 uint8_t fcode;
 uint8_t src;
 uint8_t *buf ;
 uint8_t buf_len;

} cob_t;

 P a g e 19 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.8 canopen_timestamp_t

Description:

canopen_timestamp_t is a data type used to store and transmit the network time. It
contains 28bits representing milliseconds, 4 reserved bits, and 16 bits for days since
the reference time of midnight January 1, 1984. This data type is used by object
dictionary index 0x1012 and the timestamp consumer/producer functions.

Definition:

typedef struct{

 uint32_t mil l iseconds;
 uint16_t days;

} canopen_t imestamp_t;

 P a g e 20 | 55

ssCANopen User’s Manual

Chapter 4: ssCANopen API

4.1.9 od_default_entry

Description:

od_default_entry is a data type used to store the default values of protected object
dictionary entries. Entries are caused by the range specified in the configuration tool.
Entries are not created for objects which are not modifiable. It contains the value,
index, subindex, port, and a flag value set to 1 if the value is a pointer instead of the
real value. canopen_od_default and canopen_od_factory_default are arrays of this
data type. The first is the actively used default table. The second is only restored with
the 0x1011 restore defaults SDO.

Definition:

typedef struct
{
 uint32_t val;
 uint16_t ix;
 uint8_t sx;
 uint8_t port : 4;
 uint8_t f lags : 3;
 uint8_t indirect: 1;
} od_default_entry;

 P a g e 21 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.1.10 nsd_t (Master only)

Description:

NSD_t is a data type used to store the status of nodes observed on the CANopen
network. It contains the nodeid, operational state, and timestamp representing the
time the last heartbeat was observed. canopen_nsd is an array of this data type.

Definition:

typedef struct {

 uint8_t nodeid;
 uint8_t state;
 uint8_t f lags;
 uint32_t lastseen_timestamp;

} nsd_t;

 P a g e 22 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2 API Functions

4.2.1 canopen_init

 Function Prototype:

Description:

 Initializes the CANopen module.

 Parameters:
void

 Return Value
void

void canopen_init (

 void

);

 P a g e 23 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.2 canopen_update

 Function Prototype:

Description:

Provides the periodic time base for the CANopen module. This function should be
called by the application at the period defined in CANOPENCFG_TICK_PERIOD.

 Parameters:
void

 Return Value
void

void canopen_update (

 void

);

 P a g e 24 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.3 canopen_process

 Function Prototype:

Description:

Processes received CANopen message. This function is called by the CANopen
module with a complete CANopen message and is the intended location for the
application layer to handle received CANopen messages. Multipacket messages are
not supported in this version.

 Parameters:
net: CAN network.
msg: Pointer to received CANopen message.

 Return Value
void

void canopen_process (
 uint8_t net,
 canopen_t *msg
);

 P a g e 25 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.4 canopen_tx_tpdo

 Function Prototype:

Description:

This function can be called from the application to send an event based TPDO. Note:
TPDOs can also be transmitted from canopen_update() under the context of either
inhibit time or a SYNC message. For event time, is_changed is always set to 1, but
inhibit time checks if the PDO data has changed before transmitting.

 Parameters:

net: CAN network.

n: Designates which TPDO to transmit.

is_changed: This parameter allows other parts of the code to manually flag this TPDO
as changed. Under canopen_update, is_changed is set to 1 regarding event time and
set to 0 regarding inhibit time.

 Return Value

1: Message was not buffered for transmission.

0: Message was buffered for transmission.

void canopen_tx_tpdo (
 uint8_t net,
 uint8_t n
);

 P a g e 26 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.5 canopen_set_error

 Function Prototype:

Description:

Call to set the error state indicating an internal error has occurred. This will add the
error to the error field (object 1003h) and transmit the error on the CANopen network
using the EMCY object. Supporting the EMCY object is optional. If implemented, the
device should support at minimum the 0000h (Error reset) and 1000h (Generic error)
codes.

See canopen_clear_errors(…) for clearing an error state.

 Parameters:

net: CAN network.

emcy_code: CANopen EMCY code best representing internal error. See canopen.h
for a partial list and CIA 301 7.2.7.1 for the complete list.

mfg_code: An optional 5-byte manufacture specific error code.

 Return Value

 void

void canopen_set_error (
 uint8_t net,
 uint16_t emcy_code,
 uint8_t *mfg_code
);

 P a g e 27 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.6 canopen_clear_errors

 Function Prototype:

Description:

Call to clear the CANopen device’s error state. This will clear the error field (object
1003h) and transmit an EMCY message with the CANOPEN_EMCY_ERROR_RESET
code signaling to EMCY consumers that the error condition has been cleared.

 Parameters:

net: CAN network.

 Return Value

 void

void canopen_clear_errors (
 uint8_t net
);

 P a g e 28 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.7 canopen_set_state

 Function Prototype:

Description:

Requests a change in the operational state of the CANopen device. See diagram
“operational states” in section 7.3.2 of CIA301 for permissible state changes. The
state change will only occur if it is a permitted state change. Example: A device in the
Initialization state cannot switch to Operational directly.

 Parameters:

net: CAN network

canopen_nmt_state: state to transition to. See CANOPEN_STATE_* in canopen.h.

 Return Value

 uint8_t: success code (0=success, 1=fail)

uint8_t canopen_set_state (
 uint8_t net,
 uint8_t canopen_nmt_state
);

 P a g e 29 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.8 canopen_read_od

 Function Prototype:

Description:

Reads the object dictionary location specified by index and subindex into buf.

 Parameters:

net: CAN network.

index: index in the remote node’s object dictionary

subindex: subindex in the remote node’s object dictionary

buf: buffer to store read value

len: bytes to read

 Return Value

 void

void canopen_read_od(
 uint8_t net,
 uint16_t index,
 uint8_t subindex,
 uint8_t *buf,
 uint8_t *len
);

 P a g e 30 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.9 canopen_write_od

 Function Prototype:

Description:

Writes the value in buf to the object dictionary location specified by index and
subindex.

 Parameters:

net: CAN network

node_id: node id of the remote node

index: index in the remote node’s object dictionary

subindex: subindex in the remote node’s object dictionary

buf: buffer to store read value

len: bytes to read

 Return Value

 void

void canopen_write_od(
 uint8_t net,
 uint16_t index,
 uint8_t subindex,
 uint8_t *buf,
 uint8_t len
);

 P a g e 31 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.10 canopen_read_remote_od

 Function Prototype:

Description:

Reads the object dictionary value at a given location in a remote node’s object
dictionary. Node ID, index, and subindex values indicate the node and location of the
value to read.

This function requests an SDO transfer from the remote node’s SDO server. If the
data is less than 4 bytes an expedited transfer is used. If the data exceeds 4 bytes,
segmented transfer is used. Block transfer is not supported. The returned data is
passed to canopen_app_handle_sdo().

 Parameters:

net: CAN network

node_id: node id of the remote node

index: index in the remote node’s object dictionary

subindex: subindex in the remote node’s object dictionary

 Return Value

 void

void canopen_read_remote_od(
 uint8_t net,
 uint8_t node_id,
 uint16_t index,
 uint8_t subindex
);

 P a g e 32 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.11 canopen_write_remote_od

 Function Prototype:

Description:

Changes the value at a given location in a remote object dictionary. Node ID specifies
the remote node, index and subindex indicate the locate in the object dictionary.

This function initiates an SDO transfer to the remote node’s SDO server for data
transfer. If the data is less than 4 bytes an expedited transfer is used. If the data
exceeds 4 bytes, segmented transfer is used. Block transfer is not supported.

 Parameters:

net: CAN network

node_id: node id of the remote node

index: index in the remote node’s object dictionary

subindex: subindex in the remote node’s object dictionary

buf: data bytes to write

len: number of data bytes to write

 Return Value

 void

void canopen_write_remote_od(
 uint8_t net,
 uint8_t node_id,
 uint16_t index,
 uint8_t subindex,
 uint8_t *buf,
 uint8_t len
);

 P a g e 33 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.12 canopen_sync_enable

 Function Prototype:

Description:

Enables the node to begin transmitting the SYNC message according to the configured
SYNC inhibit period. Only one node on a network should be a SYNC producer.

 Parameters:

net: CAN network

 Return Value

 void

void canopen_sync_enable(
 uint8_t net
);

 P a g e 34 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.13 canopen_sync_disable

 Function Prototype:

Description:

Disables SYNC message transmission.

 Parameters:

net: CAN network

 Return Value

 void

void canopen_sync_disable(
 uint8_t net
);

 P a g e 35 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.2.14 canopen_set_state_remote_node (Master Only)

 Function Prototype:

Description:

Requests a change in the operational state of the remote CANopen device. See
diagram “operational states” in section 7.3.2 of CIA301 for permissible state changes.
The state change will only occur if it is a permitted state change. Example: A device in
the Initialization state cannot switch to Operational directly.

 Parameters:

net: CAN network

node_id: node id of the remote node. Use 0 to affect all nodes.

canopen_nmt_state: state to transition to. See CANOPEN_STATE_* in canopen.h.

 Return Value

 void

void canopen_set_state_remote_node(
 uint8_t net,
 uint8_t node_id,
 uint8_t canopen_nmt_state
);

 P a g e 36 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3 Application Callback Functions

4.3.1 canopen_app_process

 Function Prototype:

Description:

This function is called from the CANopen stack with every CANopen message while
the device is operational. cob contains the function code, source address, the number
of data bytes, and up to 8 bytes of data.

Use this function to process incoming PDO data and EMCY messages.

 Parameters:

net: CAN network

cob: communication object.

 Return Value

 void

void canopen_app_process(
 uint8_t net,
 cob_t *cob
);

 P a g e 37 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.2 canopen_app_update

 Function Prototype:

Description:

This function is called periodically from the CANopen stack.

Use this function to process incoming PDO data and EMCY messages.

 Parameters:

void

 Return Value

 void

void canopen_app_update(
 void
);

 P a g e 38 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.3 canopen_app_time

 Function Prototype:

Description:

This function is called with every TIME message received by the CANopen stack. Use
this function to synchronize the node’s clock with the network time.

The TIME message is given a CAN-ID with high priority however there still may be
some latency due to other messages being transmitted first. If additional precision is
required the high-resolution timestamp object (1013h) can be mapped into a PDO.

 Parameters:

net: CAN network.

ts: timestamp containing days and milliseconds since epoch (midnight Jan. 1, 1984)

 Return Value

 void

void canopen_app_time (
 uint8_t net,
 canopen_timestamp_t *ts
);

 P a g e 39 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.4 canopen_app_will_change_state

 Function Prototype:

Description:

This function is called when the CANopen device is changing operational state.

 Parameters:

net: CAN network.

canopen_state_current: current state

canopen_state_final: destination state

 Return Value

 void

void canopen_app_will_change_state (
 uint8_t net,
 uint8_t canopen_state_current,
 uint8_t canopen_state_final
);

 P a g e 40 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.5 canopen_app_sync

 Function Prototype:

Description:

This function is called from the CANopen stack when a SYNC message is received.
Use this function to synchronize behavior across CANopen nodes. Data should be
sampled here in preparation for a synchronous PDO transmission. See CiA 7.2.2.2 for
more information about synchronous PDO transmission.

The counter byte may be implemented on devices implementing CiA 301 v4.1. The
counter allows for multiple virtual SYNC messages on the same CANopen network to
distribute bus load or have varied SYNC behavior across nodes.

 Parameters:

net: CAN network.

counter: one byte of counter data (may be implemented in some devices).

 Return Value

 void

void canopen_app_sync (
 uint8_t net,
 uint8_t counter
);

 P a g e 41 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.6 canopen_app_handle_sdo

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO response has been
received.

 Parameters:

net: CAN network.

nodeid: node ID of remote SDO server

index: index of object dictionary entry

subindex: subindex of object dictionary entry

buf: data bytes

buf_len: number of data bytes

 Return Value

 void

void canopen_app_handle_sdo (
 uint8_t net,
 uint8_t nodeid,
 uint16_t index,
 uint8_t subindex,
 uint8_t *buf,
 uint8_t buf_len
);

 P a g e 42 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.7 canopen_app_write_od_qualify

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO requests a write to the
object dictionary. This function should confirm that the requested entry can be written
to. Any pre-write side effects should occur here. This function returns a CANopen
defined SDO error code. The fault parameter should also be set with the error code.

 Parameters:

port: CAN network port.

index: index of object dictionary entry

subindex: subindex of object dictionary entry

len: the length of the requested write

buf: data bytes

buf_len: number of data bytes

fault: CANopen defined error code

 Return Value

 uint32_t err: A CANopen defined SDO error code

void canopen_app_write_od_qualify (
 uint8_t port,
 uint16_t index,
 uint8_t subindex,
 uint32_t len,
 uint8_t *buf,
 uint8_t buf_len
 uint32_t *fault
);

 P a g e 43 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.8 canopen_app_write_od

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO requested write of the
object dictionary has completed. Any post-write side effects should occur here. This
function returns a CANopen defined SDO error code. The fault parameter should also
be set with the error code. The transfer will be aborted if a failure code is returned.

 Parameters:

port: CAN network port.

index: index of object dictionary entry

subindex: subindex of object dictionary entry

len: the length of the requested write

buf: data bytes

buf_len: number of data bytes

fault: CANopen defined error code

 Return Value

 Void. Please set fault.

void canopen_app_write_od (
 uint8_t port,
 uint16_t index,
 uint8_t subindex,
 uint32_t len,
 uint8_t *buf,
 uint8_t buf_len
 uint32_t *fault
);

 P a g e 44 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.9 canopen_app_read_od

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO requested read of the
object dictionary has completed. Any post-read side effects should occur here. This
function returns a CANopen defined SDO error code. The fault parameter should also
be set with the error code. The transfer will be aborted if a failure code is returned.

 Parameters:

port: CAN network port.

index: index of object dictionary entry

subindex: subindex of object dictionary entry

len: the length of the requested write

buf: data bytes

buf_len: number of data bytes

fault: CANopen defined error code

 Return Value

 Void. Please set fault.

void canopen_app_read_od (
 uint8_t port,
 uint16_t index,
 uint8_t subindex,
 uint32_t len,
 uint8_t *buf,
 uint8_t buf_len
 uint32_t *fault
);

 P a g e 45 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.10 canopen_app_reset_comm

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO requests a restore of the
default values. It is used to handle non-standard data types. The user is responsible
for restoring these data types manually.

 Parameters:

ptr: Pointer to the OD entry which cannot be handled by the stack.

 Return Value

 void

void canopen_app_reset_comm (
 od_default_entry *ptr
);

 P a g e 46 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.11 canopen_app_save

 Function Prototype:

Description:

This function is called from the CANopen stack when an SDO requests a save of the
default values. It is used to handle non-standard data types. The user is responsible
for storing these data types manually.

 Parameters:

ptr: Pointer to the OD entry which cannot be handled by the stack.

 Return Value

 void

void canopen_app_save (
 od_default_entry *ptr
);

 P a g e 47 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.12 canopen_app_load_defaults

 Function Prototype:

Description:

This function is called from the CANopen stack when a reset of the default
communication parameters is requested. Any application specific side effects should
be handled here.

 Parameters:

void

 Return Value

 void

void canopen_app_load_defaults (
 void
);

 P a g e 48 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.13 canopen_app_save_defaults

 Function Prototype:

Description:

This function is called from the CANopen stack when a save of the default
communication parameters is requested. Any application specific side effects should
be handled here. A typical use of this function would be to write the default table to
flash.

 Parameters:

void:

 Return Value

 void

void canopen_app_save_defaults (
 void
);

 P a g e 49 | 55

ssCANopen User’s Manual

Chapter 4: ssJ1939 API

4.3.14 canopen_app_mappable

 Function Prototype:

Description:

This function is called from the CANopen stack to validate if a provided object is
mappable to a TPDO or RPDO.

 Parameters:

port: CAN network port.

index: index of object dictionary entry

subindex: subindex of object dictionary entry

 Return Value

 uint8_t mappable: return code for if the object is mappable.

 0: not mappable, 1: TPDO, 2 RPDO, 3 either

uint8_t canopen_app_mappable (
 uint8_t port,
 uint16_t index,
 uint8_t subindex
);

 P a g e 50 | 55

ssCANopen User’s Manual

Chapter 5: Configuration

Chapter 5: Configuration

This chapter describes all configurable items of the CANopen module. All of these
configurations can be set using the configuration tool application which has been designed to
make configuration of the object dictionary easier. The application will export all settings and
the object dictionary to two C language files, canopen_cfg.c and canopen_cfg.h.

5.1 Requirements
Environment
The configuration tool is designed to operate on Windows 7 and emit standard C files for
inclusion with the CANopen stack files. Projects can be saved from the configuration tool to a
text-based format.

Some systems, including Windows XP, will require .NET 4.0 to be installed from the following
link: http://www.microsoft.com/en-us/download/details.aspx?id=17851

5.2 Project Settings

Figure 5.1 – Configuring project settings.

 P a g e 51 | 55

ssCANopen User’s Manual

Chapter 5: Configuration

CANopen System Tick Period Configuration

After configuring the system to call canopen_update at a fixed periodic interval the definition
CANOPENCFG_TICK_PERIOD should be set to match the number of milliseconds in the
period. This provides the time base for the CANopen module. It is recommended that this
function be called at least every 25 ms.

Export Filename

Set the path and filename for the exported CANopen settings file. Defaults are
canopen_cfg.c / canopen_cfg.h.

Developer

The developer fields version and notes are provided solely for the developer’s use and could be
used to track the version of the device profile and a descriptive comment.

CAN

Configure the number of CAN networks (minimum 1) then select the device mode. Mirrored will
create one CANopen device which sends and receives on all CAN networks. Independent will
create an independently configured and operating CANopen device for each network.

/* System's f ixed t ick period in mil l iseconds */
#def ine CANOPENCFG_TICK_PERIOD 20U

Export f i lename: f i lename and path

version: Text for developer ’s use
notes: Text comment for developer ’s use

CAN_NETWORKS: number of CAN networks to use
DEVICE_MODE: 0=mirrored, 1=independent

 P a g e 52 | 55

ssCANopen User’s Manual

Chapter 5: Configuration

5.3 Device Settings
CANopen node ID

The node ID identifies the CANopen device’s unique address on the network. The node
ID must be between 1 and 127.

NMT Master

This flag enables NMT master functionality in the given node. Only one node on a CANopen
network can be master. (Requires ssCANopen-master)

CANopen Heartbeat

Configure the interval at which heartbeats are transmitted from this node in
milliseconds. Heartbeat must be greater than 0 (Node-guarding not supported).

SYNC Producer

This flag enables SYNC producer functionality in the given node. Only one node on a
CANopen network can be a SYNC producer (not necessarily the master).

SYNC communication cycle period is the period in microseconds of the SYNC signal.

SYNC_MAX_VALUE sets the highest value for the counter (object 1019h). This should
be a multiple of the highest synchronous PDO cycle to guarantee that the lowest
frequency synchronous PDO will be transmitted in one counter cycle.

Nodeid: number between 1 and 127

NMT_MASTER: 0=disabled or 1=enabled

#def ine OD_HB_TIME (3000U/CANOPENCFG_TICK_PERIOD)

SYNC_PRODUCER: 0=disabled or 1=enabled
SYNC_CYCLE_TIME: (3000U/CANOPENCFG_TICK_PERIOD)
SYNC_MAX_VALUE: 100

 P a g e 53 | 55

ssCANopen User’s Manual

Chapter 5: Configuration

5.4 Object Dictionary

Figure 5.2 – Configuring object dictionary index 1018h subindex 0x02 (Product
Code)

Object Dictionary
The object dictionary values are set automatically based on the number of object dictionary
entries, TPDOs, and RPDOs that are defined using the configuration tool.

#def ine CANOPEN_CFG_NUMBER_TPDOS 0
#def ine CANOPEN_CFG_NUMBER_RPDOS 1
#def ine CANOPEN_CFG_MAX_PDO_SIZE 8
#def ine CANOPEN_ COD_SIZE 42
#def ine CANOPEN_ OD_SIZE 12

 P a g e 54 | 55

ssCANopen User’s Manual

Chapter 5: Configuration

CANopen Proprietary Application Settings
These are miscellaneous fields representing the node id, device type, vendor id, product
code, product revision and serial number. See the CANopen specification, CIA 301, for
details. These are stored in objects 1001h and 1018h.

CANopen Special Object Dictionary Entries
These definitions indicate to the program the position object dictionary entries such as
heartbeat and error register. Do not modify these values.

CANopen PDO Entry Layout
These definitions define the location of PDO value in the object dictionary. These
definitions are used by canopen.c. Do not modify these values.

#def ine CANOPEN_NODE_ID 0x01
#def ine OD_DEVICE_TYPE 0x000F0191L
#def ine OD_VENDOR_ID 0x00455341L
#def ine OD_PRODUCT_CODE 0x00010002L
#def ine OD_REVISION 0x00010020L
#def ine OD_SERIAL 0xFFFFFFFFL

#def ine HB 0
#def ine ER 1

#def ine PDO_COB_ID 1
#def ine PDO_TYPE 2
#def ine PDO_INHIBIT 3
#def ine PDO_EVENT 4

 P a g e 55 | 55

ssCANopen User’s Manual

Chapter 6: Examples

Chapter 6: Examples

This chapter breaks down the two included examples of how to implement the
ssCANopen protocol stack.

6.1 Example: Slave – Engine Hours
The slave example demonstrates a node that simulates a measured value called engine
hours and reports them back to a master node via an asynchronous PDO transmission.

Engine hours are stored in the slave object dictionary at index 0x6000 subindex 0x01.
The engine hour value is updated periodically in app_update().

6.2 Example: Master
The master example demonstrates an NMT master node that is designed to receive
“engine hour” transmissions from the example slave. After initializing the master resets
all of the nodes on the network then after receiving the init heartbeat from the slave
node in canopen_app_process(), the master commands the example slave to go pre-
operational and finally operational.

RPDO_0 on the master configured to receive the message from the slave. Received
values are stored at index 0x6200 subindex 0x01. Periodically in
canopen_app_update() the master reads the stored value from that location and places
it temporarily in a variable called hours.

uint8_t init_engine_hours[4] = {0, 0, 0, 0};
canopen_write_od(0x6000, 0x01, init_engine_hours, 4)

